Direct Reflection for Free!

Joomy Korkut

Princeton University

advised by Andrew W. Appel

August 20th, 2019

ICFP 2019 Student Research Competition

Basic terminology

When we write an interpreter or a compiler, we are dealing with
two languages:

® Host language: the language in which the interpreter/compiler
Is implemented.

® (bject language: the input language of the generated
Interpreter/compiler.

® Examples:
host: 0Caml, object: Coqg
host: Haskell, object: Agda

Basic terminology

® Metaprogramming Is treating program fragments as data.

® We want to inspect these program fragments and generate
new program fragments.

® We also want to run these program fragments as actual
programs! (splice or unquote or antiguote)

Problem and Motivation

e Implementing metaprogramming systems, when writing
a compiler/interpreter, is difficult.

e |t's hard to maintain!

e Even for stable languages, these implementations
are l00oooo0000N(.

Branch: master v | |dris-dev / src / |dris / Reflection.hs

a ahmadsalim Remove old eliminator generation and induction tactic (#4351)

12 contributors . ;‘ m K5 a ” . n ﬂ i

(11 Branch: master~ | Idris-dev / libs / prelude / Language / Reflection.idr

Qjoom Add Bool, Maybe, Either implementations for Quotable (#4367)

7 contributors :\ n Q m a

Branch: master v | |ldris-dev / libs / prelude / Language / Reflection / Elab.idr

1288 lines
@joom Add tryCatch as an Elab action in Language.Reflection.Elab

8 contributors . g(‘ \:\ n § “ a

#ule Languag

48 sloc) 25.2 KB

Primitives and tactics for elaborator reflection.
I
| || Elaborator reflection allows Idris code to control Idris's
||| built-in elaborator, and re-use features like the unifier, the
||| type checker, and the hole mechanism.
module Language.Reflection.Elab

Branch: masterv | agda / src / full / Agda / TypeChecking / Unquote.hs

12 contributors ﬂ ;3 r i‘ P l"'} ri &} a

856 sl
SO Branch: master v = agda / src / full / Agda / TypeChecking / Quote.hs

module Agda.Typ i' L-TChen Remove all unused modules (#3917)

16 contributors ﬂ ;3 ? B = i‘“lﬂ% ra Q; 1

| 65 S'Loc\ 1 L | (Vdel
Branch: master v agda / src / data / lib / prim / Agda / Builtin / Reflection.agda

module Agda.T] .
53 andreasabel [fixed #3991] allow fractional precedences in fixity declarations

1Qgaatributors ﬂrl'l ai"'l" a

(61 sloc) 11.8 KB

There has to be OPTIONS ——without-K --safe --no-sized-types —-—-no-guardedness #-}
a better Way' module Agda.Builtin.Reflection where
-

My solution

® |Jse the generic programming abilities of the host language, to
derive a metaprogramming feature for the object language.

® This significantly shortens the code needed.

® [t is automatically up to date with the AST.

In other words...

® |f you have evaluation for your language, you should be able
to evaluate quasiquoted terms for free!

® |f you have type-checking for your language, you should be
able to type-check quasiquoted terms for free!

® When you automate conversion between Haskell terms and
object language terms, you can reuse your Haskell functions!

Here's the recipe!

Pick your object language. (What language do you want to implement?)

Define AST data types in Haskell for your object language. (Exp, Ty, Pat, whatever)

Pick a representation method.
Scott encoding for the untyped A-calculus
Sums of products for the typed A-calculus

Define a Bridge type class for your language.

class Bridge a where
reify :: a = Exp
reflect :: Exp —= Maybe a
ty o Ty

10

Here's the recipe!

Pick your object language. (What language do you want to implement?)

Define AST data types in Haskell for your object language. (Exp, Ty, Pat, whatever)

Pick a representation method.
Scott encoding for the untyped A-calculus
Sums of products for the typed A-calculus

Define a Bridge type class for your language.

Definea Data a = Bridge a instance for the AST data type.

11

Here's the recipe!

Pick your object language. (What language do you want to implement?)

Define AST data types in Haskell for your object language. (Exp, Ty, Pat, whatever)

Pick a representation method.
Scott encoding for the untyped A-calculus
Sums of products for the typed A-calculus

Define a Bridge type class for your language.

Definea Data a = Bridge a instance for the AST data type.

Profit!

12

data Exp =

Var String X

App Exp Exp el e2
Abs String Exp A x. e
StrLit String "hello"
MkUnit ()

deriving (Show, Eq, Data, Typeable)

13

The Haskell terms triangle

Haskell term
A value .
that represents It
True

(in meta language)
Bridge Bool instance
Object language term

that represents It
True AAT.T inl ()
(if our object language (if our object language (if our object language
has ADTs) Is untyped A-calculus) Is typed A-calculus

with sums and products)
14

The meta values triangle

Term in the AST representing that
A-calculus term in Haskell
e1 € App el eZ

Bridge Exp Instance

(7)
%
4
()
é//e.
%
%:. .
% Reification of that term

In the A-calculus

Acicrcscascs. c2 [er] [er]

15

data Exp =

Var String X

App Exp Exp el e2
Abs String Exp AN x. e
StrLit String "hello"
MkUnit ()
Quasiquote Exp (e
Antiquote Exp ~(e)

deriving (Show, Eq, Data, Typeable)

16

Tying the knot

eval' :: M.Map String Exp — Exp —> Exp

eval' env (Quasiquote e) = reify e
eval' env (Antiquote e) = let Just x = reflect (eval e) in x

(no error handling here)

17

Branch: master v | |dris-dev / src / |dris / Reflection.hs

a ahmadsalim Remove old eliminator generation and induction tactic (#4351)

12 contributors . ;‘ m K5 a ” . n ﬂ i

(11 Branch: master~ | Idris-dev / libs / prelude / Language / Reflection.idr

Qjoom Add Bool, Maybe, Either implementations for Quotable (#4367)

7 contributors :\ n Q m a

Branch: master v | |ldris-dev / libs / prelude / Language / Reflection / Elab.idr

1288 lines
@joom Add tryCatch as an Elab action in Language.Reflection.Elab

8 contributors . g(‘ \:\ n § “ a

#ule Languag

48 sloc) 25.2 KB

Primitives and tactics for elaborator reflection.
I
| || Elaborator reflection allows Idris code to control Idris's
||| built-in elaborator, and re-use features like the unifier, the
||| type checker, and the hole mechanism.
module Language.Reflection.Elab

Tying the knot

In the Haskell REPL

A> eval <$> parseExp 'E ({(A x.%)] -)"

R1 g ht MkUnit identity function quoting unit A

+

I (()) L concrete syntax of our object language

splicing the function application

19

What else can we achieve using this pattern?

® Type checker / elaborator reflection: a way to expose the type-checker
in the object language and make It available for the reflected terms,
usable in metaprograms.

® |nspecting the context in runtime by reifying and reflecting the context,
giving us a kind of computational reflection

® Reuse of efficient host language code by adding object language
primitives

20

Extra slides

“In programming languages, there is a simple yet elegant strategy for implementing
reflection: instead of making a system that describes itself, the system is made
available to itself. We name this direct reflection, where the representation of
language features via its semantics is actually part of the semantics itself."

Eli Barzilay, PhD dissertation, 2006

22

Generalizing Scott encoding

|_Ctor e_1 ... e_n-‘

(in meta language)

Acol. Ac2. ... Aceom. c_i [e_1] ... [e-n]

where Ctor is the ith constructor
out of m constructors

Key idea: If Ctor constructs a value of a type that has a Data
Instance, then we can get the Scott encoding automatically

23

Haskell's generic programming techniques

There are a few alternatives such as GHC.Generics, but | chose Data and Typeable for their expressive power.

class Typeable a = Data a where
class Typeable a where e
typeOf :: a = TypeRep toConstr :: a = Constr
dataTypeOf :: a — DataType

gmapQ :: (forall d. Datad = d — u) - a = [u] (can collect arguments of a value)

fromConstrM :: forall m a. (Monad m, Data a) = (forall d. Data d = m d) = Constr = m a

(monadic helper to construct new value from constructor)

Both Data and Typeable are automatically derivable! (for simple Haskell ADTs)

24

Implementation of Scott encoding from Data

instance Data a = Bridge a where

reify v
getTypeRep fla = getTypeRep iInt = reify @dInt (unsafeCoerce v)
getTypeRep fa = getTypeRep dString = reify @String (unsafeCoerce v)

otherwise = (hack)
ﬂ]ams args](apps (Var ¢ :[gmapQ reifyArg v})
(e @) ia ()
args, |c)| = constrloScott ga (toConstr v
1relgyr:: forall d. Data d = d = Exp - getallthe constructors
. pick which one you use
recurse on the arguments

reifyArg x =[reify id x]3

construct the nested lambdas

reflect e and applications

25

Implementation of Scott encoding from Data

instance Data a = Bridge a where
reify v

reflect e
getTypeRep da
getTypeRep ila
otherwise =
case collectAbs e of }- dissect the nested lambdas
([1, -) —= Nothing
(args, body) —
case spineView body o
(Var ¢, rest) — do
ctors < getlonstrs (a

ctor < lookup ¢ (zip args ctors
evalStateT [fromConstrM _reflectAr ctor)] rest
K - 4 . get the nested lambda bindings

getTypeRep #Int = unsafeCoerce (reflect dInt e) (hack)
getTypeRep @String = unsafeCoerce <$> (reflect @String e)

-- dissect the nested application

_ —> Nothing
where . get the head of the
reflectArg :: forall d. Data d = StateT [Exp] Maybe d nested application
reflectArg = do e < gets head . recurse on the arguments

modify tail . construct the Haskell term
1ift |(reflect id e)]3

26

What we can do using this

® Parser reflection: a way to pass a string containing code in the object language, to the
object language, and getting the reflected term.

® Type checker / elaborator reflection: a way to expose the type checker in the object
language and make it available for the reflected terms, usable in metaprograms.

® Reuse of efficient host language code

27

Future work

® More experiments with typed object languages, especially dependent types
® Boehm-Berarducci encoding
® (bject languages with algebraic data types

® Typed metaprogramming a la Typed Template Haskell or Idris

® Another metalanguage: Coqg, JavaScript?

28

Related Work

® We did not have a convincing way to automatically add homogeneous generative
metaprogramming to an existing language definition, until

However, their one-size-fits-all method requires the addition of a new constructor to
the AST to represent ASTs. And the addition of "tags” as well.

® We still do not have a convincing way to automatically add homogeneous generative
metaprogramming to an existing language implementation.

29

