
Direct Reflection for Free!
Joomy Korkut 

Princeton University  
 

advised by Andrew W. Appel 

 
August 20th, 2019 

ICFP 2019 Student Research Competition

 1



Basic terminology

 2

When we write an interpreter or a compiler, we are dealing with 
two languages: 

•Host language: the language in which the interpreter/compiler 
is implemented. 

•Object language: the input language of the generated 
interpreter/compiler. 

• Examples:  
host: OCaml, object: Coq 
host: Haskell, object: Agda



Basic terminology

 3

• Metaprogramming is treating program fragments as data. 

• We want to inspect these program fragments and generate 
new program fragments.  

• We also want to run these program fragments as actual 
programs! (splice or unquote or antiquote)



Problem and Motivation

 4

• Implementing metaprogramming systems, when writing 
a compiler/interpreter, is difficult. 

• It's hard to maintain! 

• Even for stable languages, these implementations 
are loooooooooong.



 5



 6

There has to be  
a better way!



My solution

 7

•Use the generic programming abilities of the host language, to 
derive a metaprogramming feature for the object language. 

•This significantly shortens the code needed.  

•It is automatically up to date with the AST.



In other words...

 8

• If you have evaluation for your language, you should be able 
to evaluate quasiquoted terms for free! 

• If you have type-checking for your language, you should be 
able to type-check quasiquoted terms for free! 

• When you automate conversion between Haskell terms and 
object language terms, you can reuse your Haskell functions!



Here's the recipe!

 9

1. Pick your object language. (What language do you want to implement?) 

2. Define AST data types in Haskell for your object language. (Exp, Ty, Pat, whatever) 

3. Pick a representation method. 
    Scott encoding for the untyped λ-calculus 
    Sums of products for the typed λ-calculus 

4. Define a Bridge type class for your language.

!
me



class Bridge a where 
  reify 56 a 7> Exp 
  reflect 56 Exp 7> Maybe a

 10

  ty 56 Ty



Here's the recipe!

 11

1. Pick your object language. (What language do you want to implement?) 

2. Define AST data types in Haskell for your object language. (Exp, Ty, Pat, whatever) 

3. Pick a representation method. 
    Scott encoding for the untyped λ-calculus 
    Sums of products for the typed λ-calculus 

4. Define a Bridge type class for your language. 

5. Define a  Data a <> Bridge a  instance for the AST data type.

!
me



Here's the recipe!

 12

1. Pick your object language. (What language do you want to implement?) 

2. Define AST data types in Haskell for your object language. (Exp, Ty, Pat, whatever) 

3. Pick a representation method. 
    Scott encoding for the untyped λ-calculus 
    Sums of products for the typed λ-calculus 

4. Define a Bridge type class for your language. 

5. Define a  Data a <> Bridge a  instance for the AST data type. 

6. Profit!

!
me



 13

data Exp = 
    Var String 
  | App Exp Exp 
  | Abs String Exp 
  | StrLit String 
  | MkUnit 

x 
e1 e2 
λ x. e 
"hello" 
( )

deriving (Show, Eq, Data, Typeable) 



The Haskell terms triangle

 14

trueness

A value Haskell term 
that represents it

Object language term 
that represents it

(in meta language)
True

(if our object language  
has ADTs)

True
(if our object language  
is untyped λ-calculus)

λt.λf.t
(if our object language  

is typed λ-calculus  
with sums and products)

inl ()

Bridge Bool  instance

reif
icat

ion

refl
ect

ion



The meta values triangle

 15

e1 e2

Term in the  
λ-calculus

AST representing that  
term in Haskell

Reification of that term 
in the λ-calculus

App e1 e2

λ c1 c2 c3 c4 c5. c2 ⌈e1⌉ ⌈e2⌉

antiquotation

quotation

Bridge Exp  instance

reif
icat

ion

refl
ect

ion



 16

data Exp = 
    Var String 
  | App Exp Exp 
  | Abs String Exp 
  | StrLit String 
  | MkUnit 
  | Quasiquote Exp 
  | Antiquote Exp 

x 
e1 e2 
λ x. e 
"hello" 
( ) 
`(e) 
~(e)

deriving (Show, Eq, Data, Typeable) 



Tying the knot

 17

eval' 56 M.Map String Exp 7> Exp 7> Exp 
... 
eval' env (Quasiquote e) = reify e 
eval' env (Antiquote e) = let Just x = reflect (eval e) in x 

(no error handling here)



 18



concrete syntax of our object language

Tying the knot

 19

λ> eval <$> parseExp "~( (λ x.x) `( () ) )" 
Right MkUnit quoting unitidentity function

splicing the function application

"`( () )"

in the Haskell REPL



What else can we achieve using this pattern?

 20

•Type checker / elaborator reflection: a way to expose the type-checker 
in the object language and make it available for the reflected terms, 
usable in metaprograms. 

•Inspecting the context in runtime by reifying and reflecting the context, 
giving us a kind of computational reflection 

•Reuse of efficient host language code by adding object language 
primitives



Extra slides

 21



Eli Barzilay, PhD dissertation, 2006

 22

"In programming languages, there is a simple yet elegant strategy for implementing 
reflection: instead of making a system that describes itself, the system is made 
available to itself. We name this direct reflection, where the representation of 
language features via its semantics is actually part of the semantics itself."



Generalizing Scott encoding

 23

(in meta language)
Ctor e_1 ... e_n 

where Ctor is the ith constructor  
out of m constructors

λ c_1. λ c_2. ... λ c_m. c_i  e_1  ...  e_n⌈  ⌉ ⌈  ⌉

=

⌈                       ⌉

Key idea: if  Ctor constructs a value of a type that has a Data 
instance, then we can get the Scott encoding automatically



Haskell's generic programming techniques

 24

class Typeable a where 
  typeOf 56 a 7> TypeRep 

class Typeable a <> Data a where 
  ... 
  toConstr 56 a 7> Constr 
  dataTypeOf 56 a 7> DataType 

(can collect arguments of a value)

(monadic helper to construct new value from constructor)

gmapQ 56 (forall d. Data d <> d 7> u) 7> a 7> [u] 

fromConstrM 56 forall m a. (Monad m, Data a) <> (forall d. Data d <> m d) 7> Constr 7> m a 

There are a few alternatives such as GHC.Generics, but I chose Data and Typeable for their expressive power.

Both Data and Typeable are automatically derivable! (for simple Haskell ADTs)



    | getTypeRep @a fg getTypeRep @Int = reify @Int (unsafeCoerce v) 
    | getTypeRep @a fg getTypeRep @String = reify @String (unsafeCoerce v) 
    | otherwise = 

instance Data a <> Bridge a where 
  reify v 

        lams args (apps (Var c : gmapQ reifyArg v)) 
    where 
      (args, c) = constrToScott @a (toConstr v) 
      reifyArg 56 forall d. Data d <> d 7> Exp 
      reifyArg x = reify @d x 

  reflect e  
    ...

 25

(hack)

Implementation of Scott encoding from Data

1. get all the constructors 
2. pick which one you use 
3. recurse on the arguments 
4. construct the nested lambdas  

and applications

1
2

3

4



    | getTypeRep @a fg getTypeRep @Int = unsafeCoerce (reflect @Int e) 
    | getTypeRep @a fg getTypeRep @String = unsafeCoerce <$> (reflect @String e) 
    | otherwise = 

instance Data a <> Bridge a where 
  reify v 
    ... 

  reflect e 

      case collectAbs e of -- dissect the nested lambdas 
        ([], _) 7> Nothing 
        (args, body) 7> 
          case spineView body of -- dissect the nested application 
            (Var c, rest) 7> do 
                ctors <k getConstrs @a 
                ctor <k lookup c (zip args ctors) 
                evalStateT (fromConstrM reflectArg ctor) rest 
            _ 7> Nothing 
    where 
      reflectArg 56 forall d. Data d <> StateT [Exp] Maybe d 
      reflectArg = do e <k gets head 
                    modify tail 
                    lift (reflect @d e) 

 26

(hack)

Implementation of Scott encoding from Data

1. get the nested lambda bindings 
2. get the head of the  

nested application 
3. recurse on the arguments 
4. construct the Haskell term 

1

2

3

4



What we can do using this

 27

• Parser reflection: a way to pass a string containing code in the object language, to the 
object language, and getting the reflected term. 

• Type checker / elaborator reflection: a way to expose the type checker in the object 
language and make it available for the reflected terms, usable in metaprograms. 

• Reuse of efficient host language code



Future work

 28

• More experiments with typed object languages, especially dependent types 

• Boehm-Berarducci encoding 

• Object languages with algebraic data types 

• Typed metaprogramming à la Typed Template Haskell or Idris 

• Another metalanguage: Coq, JavaScript?



Related Work

 29

• We did not have a convincing way to automatically add homogeneous generative 
metaprogramming to an existing language definition, until "Modelling Homogeneous 
Generative Meta-Programming" by Berger, Tratt and Urban (ECOOP'17)  
 
However, their one-size-fits-all method requires the addition of a new constructor to 
the AST to represent ASTs. And the addition of "tags" as well. 

• We still do not have a convincing way to automatically add homogeneous generative 
metaprogramming to an existing language implementation.


